Coalgebraic representations of distributive lattices with operators

نویسندگان

  • M. M. Bonsangue
  • A. Kurz
  • I. M. Rewitzky
چکیده

We present a framework for extending Stone’s representation theorem for distributive lattices to representation theorems for distributive lattices with operators. We proceed by introducing the definition of algebraic theory of operators over distributive lattices. Each such theory induces a functor on the category of distributive lattices such that its algebras are exactly the distributive lattices with operators in the original theory. We characterize the topological counterpart of these algebras in terms of suitable coalgebras on spectral spaces. We work out some of these coalgebraic representations, including a new representation theorem for distributive lattices with monotone operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Priestley Duality for Many Sorted Algebras and Applications

In this work we develop a categorical duality for certain classes of manysorted algebras, called many-sorted lattices because each sort admits a structure of distributive lattice. This duality is strongly based on the Priestley duality for distributive lattices developed in [3] and [4] and on the representation of many sorted lattices with operators given by Sofronie-Stokkermans in [6]. In this...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I

The main goal of this paper is to explain the link between the algebraic and the Kripke-style models for certain classes of propositional logics. We start by presenting a Priestley-type duality for distributive lattices endowed with a general class of well-behaved operators. We then show that nitely-generated varieties of distributive lattices with operators are closed under canonical embedding...

متن کامل

Distributive Substructural Logics as Coalgebraic Logics over Posets

We show how to understand frame semantics of distributive substructural logics coalgebraically, thus opening a possibility to study them as coalgebraic logics. As an application of this approach we prove a general version of Goldblatt-Thomason theorem that characterizes definability of classes of frames for logics extending the distributive Full Lambek logic, as e.g. relevance logics, many-valu...

متن کامل

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005